Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.00 vteřin. 
Redukce korozních vrstev mosazi pomocí nízkotlakého nízkoteplotního plazmatu
Řádková, Lucie ; Slavíček,, Pavel (oponent) ; Zahoran,, Miroslav (oponent) ; Krčma, František (vedoucí práce)
Tato práce pojednává o odstranění vrstev korozních produktů, které se mohou vyskytovat na archeologických nálezech. K redukci korozních vrstev bylo použité nízkotlaké nízkoteplotní plazma. Experimenty byly provedeny na mosazných vzorcích. Modelové korozní vrstvy byly připravené dvěma různými způsoby. Některé sady vzorků byly připravené v laboratorních podmínkách ve dvou různých korozních prostředích, a to v prostředí amoniaku a parách kyseliny chlorovodíkové. Tyto vzorky korodovaly v exsikátoru. Několik vzorků bylo připraveno s inkrustací přidáním malého množství písku na povrch vzorku. Vzorky obvykle korodovaly 4 týdny. Druhý způsob, který byl použitý k přípravě vrstev korozních produktů, bylo zakopání vzorků do půdy nebo do kompostu. V tomto případě korodovaly vzorky přibližně dva roky. Vzorky byly ošetřené v nízkotlakém plazmatu (150 Pa) ve válcovém reaktoru z křemenného skla (90 cm dlouhý a 9,5 cm v průměru). Na vnější straně reaktoru byly připevněné dvě měděné elektrody připojené přes přizpůsobovací člen k radiofrekvenčnímu generátoru (13,56 MHz). Průtoky pracovních plynů byly regulovány na sobě nezávislými regulátory hmotnostního průtoku. Mezi rotační olejovou vývěvu, kterou byl systém kontinuálně čerpán, a reaktor byla umístěná vymrazovačka s kapalným dusíkem a hliníkovými pilinami, kde byly zachytávány nečistoty. Vzorek byl během ošetření umístěn na střed skleněného držáku v reaktoru. Plazma bylo generováno buď v čistém vodíku, nebo ve směsi vodík-argon. Celkový průtok pracovního plynu byl 50 sccm. Byly testovány různé poměry směsi vodík-argon, optimální byl poměr průtoků 30 sccm vodíku a 20 sccm argonu. Radiofrekvenční výboj byl použitý v kontinuálním a pulzním režimu s proměnlivou střídou při frekvenci 1000 Hz. Teplota ošetřovaného předmětu byla měřená dvěma způsoby. V prvním případě byla teplota měřená termočlánkem typu K, který byl umístěn uvnitř vzorku. Ve druhém případě byla teplota průběžně monitorovaná teploměrem s optickým přenosem dat připevněným ke vzorku malým kouskem nerezového plíšku. Teplota 100–120 °C byla stanovená jako bezpečná teplota pro měď a měděné slitiny. Pokud byla teplota měřená teploměrem s optickým přenosem dat, byl během redukce automaticky upravován výkon (kontinuální režim) nebo střída (pulzní režim) tak, aby nedošlo k překročení této teploty. Plazmochemická redukce je založená na generaci reaktivního atomárního vodíku. Reakce mezi kyslíkem a chlorem obsaženými v korozní vrstvě a vodíkovými ionty a neutrálními částicemi generovanými v plazmatu patří mezi hlavní reakce během redukce. Při těchto reakcích dochází k vytvoření nestabilního OH radikálu, který je vidět ve spektru v oblasti 306–312 nm. Toto záření bylo detekované pomocí optické emisní spektroskopie (Ocean Optics HR4000 s mřížkou 2400 vrypů/mm). Data získaná z optické emisní spektroskopie byla použitá pro výpočet rotační teploty a sledovaného časového průběhu intenzity OH radikálů. Vrstvy obsahující korozní produkty nebyly během plazmochemické redukce odstraněné úplně, ale díky reakcím, které probíhaly v plazmatu, zkřehly a mohly být po ošetření snadněji odstraněny. Některé vzorky byly před a po ošetření analyzovány SEM-EDS, další vzorky byly analyzovány pomocí XRD. EDS analýza ukázala, že po ošetření vzorků docházelo ke snížení množství kyslíku a chloru, a to zejména při 400 W pulzním režimu.
Plazmochemické odstraňování korozních vrstev bronzu
Miková, Petra ; Slavíček, Pavel (oponent) ; Tiňo, Jozef (oponent) ; Krčma, František (vedoucí práce)
V této dizertační práci byla řešena problematika aplikace nízkotlakého nízkoteplotního plazmatu na vrstvy korozních produktů na bronzu. Vrstvy korozních produktů na vzorcích byly připravovány uměle. Díky tomu měly stejné složení a mohly být během experimentů nevratně zničeny, což by u reálných archeologických artefaktů nebylo možné. Vzorky byly nařezány z bronzu, slitiny mědi a cínu, s ohledem na velikost plazmochemické aparatury. Pomocí XRF bylo zjištěno složení bronzu. Každý vzorek byl před uložením do korozně aktivního prostředí omyt etanolem a osušen proudem teplého vzduchu. Až do této fáze byl postup pro všechny vzorky stejný. Při tvorbě vrstev korozních produktů bylo potřeba zohlednit dva faktory: časové možnosti a reálnost korozně aktivního prostředí. Díky kladení důrazu na jeden či druhý faktor vzniklo několik skupin vzorků s různě degradovanými povrchy. Nejrychlejším způsobem bylo umístění vzorků do korozní komory, kde na ně působil roztok chloridu sodného za zvýšené teploty. Vzorky zkorodovaly během několika dnů. Delším, ale z hlediska kompaktnosti lepším způsobem, se ukázal postup, kdy byly vzorky uzavřeny do exsikátoru. Na jeho dně se nacházela Petriho miska s anorganickou kyselinou, v našem případě kyselinou chlorovodíkovou. Tímto způsobem zkorodovaly vzorky během jednoho měsíce. Nejdelším, ale nejrealističtějším, postupem bylo zakopání vzorků do půdy respektive do kompostu. Tento postup však prodloužil délku tvorby vrstev korozních produktů na dva roky. Po vytažení vzorků z kteréhokoliv korozního prostředí, byly vzorky vysušeny za sníženého tlaku a následně byly uloženy do bariérové folie společně s absorbéry vlhkosti a kyslíku. Vzorky s takto připraveným vrstvami korozních produktů byly ošetřeny v nízkotlakém nízkoteplotním plazmatu. Ošetření probíhalo v aparatuře, jejímž základem byl reaktor – válec z křemenného skla o průměru 100 mm a délce 900 mm. Do reaktoru byl přiváděn pracovní plyn nebo směs pracovních plynů o celkovém průtoku 50 sccm. V našem případě se jednalo o čistý vodík nebo jeho směs s argonem. Odtah vzniklých plynných sloučenin zajišťovala rotační olejová vývěva. Před ošetřením byl tlak v reaktoru 10 Pa, během ošetření 150 Pa. Energie byla do systému dodávána z vysokofrekvenčního generátoru (13,54 MHz) přes dvě měděné elektrody umístěné vně reaktoru. Podle způsobu dodávání energie bylo ošetření prováděno v kontinuálním nebo v pulzním režimu. Během experimentu byla sledována teplota vzorku a vyhodnocována emisní spektra z OES. Teplota vzorku se během výzkumu ukázala jako jeden z klíčových faktorů. Měření probíhalo nejprve termočlánkem, později se přešlo na teplotní čidlo s optickým přenosem dat. Byla stanovena bezpečná teplota a tou se poté řídil celý proces. Dále byl zkoumán vliv způsobu dodávání energie, velikosti dodávaného výkonu, velikosti vzorku, přítomnosti inkrustačních vrstev a složení pracovního plynu. Po aplikaci plazmatu byly vzorky analyzovány pomocí SEM – EDX a XRD. Po vyhodnocení získaných poznatků a zkušeností byl ošetřen reálný artefakt – bronzové dláto z naleziště u Boskovic. K tomuto artefaktu chyběla dokumentace, proto ho bylo možno použít k ověření získaných poznatků o plazmochemické redukci.
Plazmochemické odstraňování korozních vrstev bronzu
Miková, Petra ; Slavíček, Pavel (oponent) ; Tiňo, Jozef (oponent) ; Krčma, František (vedoucí práce)
V této dizertační práci byla řešena problematika aplikace nízkotlakého nízkoteplotního plazmatu na vrstvy korozních produktů na bronzu. Vrstvy korozních produktů na vzorcích byly připravovány uměle. Díky tomu měly stejné složení a mohly být během experimentů nevratně zničeny, což by u reálných archeologických artefaktů nebylo možné. Vzorky byly nařezány z bronzu, slitiny mědi a cínu, s ohledem na velikost plazmochemické aparatury. Pomocí XRF bylo zjištěno složení bronzu. Každý vzorek byl před uložením do korozně aktivního prostředí omyt etanolem a osušen proudem teplého vzduchu. Až do této fáze byl postup pro všechny vzorky stejný. Při tvorbě vrstev korozních produktů bylo potřeba zohlednit dva faktory: časové možnosti a reálnost korozně aktivního prostředí. Díky kladení důrazu na jeden či druhý faktor vzniklo několik skupin vzorků s různě degradovanými povrchy. Nejrychlejším způsobem bylo umístění vzorků do korozní komory, kde na ně působil roztok chloridu sodného za zvýšené teploty. Vzorky zkorodovaly během několika dnů. Delším, ale z hlediska kompaktnosti lepším způsobem, se ukázal postup, kdy byly vzorky uzavřeny do exsikátoru. Na jeho dně se nacházela Petriho miska s anorganickou kyselinou, v našem případě kyselinou chlorovodíkovou. Tímto způsobem zkorodovaly vzorky během jednoho měsíce. Nejdelším, ale nejrealističtějším, postupem bylo zakopání vzorků do půdy respektive do kompostu. Tento postup však prodloužil délku tvorby vrstev korozních produktů na dva roky. Po vytažení vzorků z kteréhokoliv korozního prostředí, byly vzorky vysušeny za sníženého tlaku a následně byly uloženy do bariérové folie společně s absorbéry vlhkosti a kyslíku. Vzorky s takto připraveným vrstvami korozních produktů byly ošetřeny v nízkotlakém nízkoteplotním plazmatu. Ošetření probíhalo v aparatuře, jejímž základem byl reaktor – válec z křemenného skla o průměru 100 mm a délce 900 mm. Do reaktoru byl přiváděn pracovní plyn nebo směs pracovních plynů o celkovém průtoku 50 sccm. V našem případě se jednalo o čistý vodík nebo jeho směs s argonem. Odtah vzniklých plynných sloučenin zajišťovala rotační olejová vývěva. Před ošetřením byl tlak v reaktoru 10 Pa, během ošetření 150 Pa. Energie byla do systému dodávána z vysokofrekvenčního generátoru (13,54 MHz) přes dvě měděné elektrody umístěné vně reaktoru. Podle způsobu dodávání energie bylo ošetření prováděno v kontinuálním nebo v pulzním režimu. Během experimentu byla sledována teplota vzorku a vyhodnocována emisní spektra z OES. Teplota vzorku se během výzkumu ukázala jako jeden z klíčových faktorů. Měření probíhalo nejprve termočlánkem, později se přešlo na teplotní čidlo s optickým přenosem dat. Byla stanovena bezpečná teplota a tou se poté řídil celý proces. Dále byl zkoumán vliv způsobu dodávání energie, velikosti dodávaného výkonu, velikosti vzorku, přítomnosti inkrustačních vrstev a složení pracovního plynu. Po aplikaci plazmatu byly vzorky analyzovány pomocí SEM – EDX a XRD. Po vyhodnocení získaných poznatků a zkušeností byl ošetřen reálný artefakt – bronzové dláto z naleziště u Boskovic. K tomuto artefaktu chyběla dokumentace, proto ho bylo možno použít k ověření získaných poznatků o plazmochemické redukci.
Redukce korozních vrstev mosazi pomocí nízkotlakého nízkoteplotního plazmatu
Řádková, Lucie ; Slavíček,, Pavel (oponent) ; Zahoran,, Miroslav (oponent) ; Krčma, František (vedoucí práce)
Tato práce pojednává o odstranění vrstev korozních produktů, které se mohou vyskytovat na archeologických nálezech. K redukci korozních vrstev bylo použité nízkotlaké nízkoteplotní plazma. Experimenty byly provedeny na mosazných vzorcích. Modelové korozní vrstvy byly připravené dvěma různými způsoby. Některé sady vzorků byly připravené v laboratorních podmínkách ve dvou různých korozních prostředích, a to v prostředí amoniaku a parách kyseliny chlorovodíkové. Tyto vzorky korodovaly v exsikátoru. Několik vzorků bylo připraveno s inkrustací přidáním malého množství písku na povrch vzorku. Vzorky obvykle korodovaly 4 týdny. Druhý způsob, který byl použitý k přípravě vrstev korozních produktů, bylo zakopání vzorků do půdy nebo do kompostu. V tomto případě korodovaly vzorky přibližně dva roky. Vzorky byly ošetřené v nízkotlakém plazmatu (150 Pa) ve válcovém reaktoru z křemenného skla (90 cm dlouhý a 9,5 cm v průměru). Na vnější straně reaktoru byly připevněné dvě měděné elektrody připojené přes přizpůsobovací člen k radiofrekvenčnímu generátoru (13,56 MHz). Průtoky pracovních plynů byly regulovány na sobě nezávislými regulátory hmotnostního průtoku. Mezi rotační olejovou vývěvu, kterou byl systém kontinuálně čerpán, a reaktor byla umístěná vymrazovačka s kapalným dusíkem a hliníkovými pilinami, kde byly zachytávány nečistoty. Vzorek byl během ošetření umístěn na střed skleněného držáku v reaktoru. Plazma bylo generováno buď v čistém vodíku, nebo ve směsi vodík-argon. Celkový průtok pracovního plynu byl 50 sccm. Byly testovány různé poměry směsi vodík-argon, optimální byl poměr průtoků 30 sccm vodíku a 20 sccm argonu. Radiofrekvenční výboj byl použitý v kontinuálním a pulzním režimu s proměnlivou střídou při frekvenci 1000 Hz. Teplota ošetřovaného předmětu byla měřená dvěma způsoby. V prvním případě byla teplota měřená termočlánkem typu K, který byl umístěn uvnitř vzorku. Ve druhém případě byla teplota průběžně monitorovaná teploměrem s optickým přenosem dat připevněným ke vzorku malým kouskem nerezového plíšku. Teplota 100–120 °C byla stanovená jako bezpečná teplota pro měď a měděné slitiny. Pokud byla teplota měřená teploměrem s optickým přenosem dat, byl během redukce automaticky upravován výkon (kontinuální režim) nebo střída (pulzní režim) tak, aby nedošlo k překročení této teploty. Plazmochemická redukce je založená na generaci reaktivního atomárního vodíku. Reakce mezi kyslíkem a chlorem obsaženými v korozní vrstvě a vodíkovými ionty a neutrálními částicemi generovanými v plazmatu patří mezi hlavní reakce během redukce. Při těchto reakcích dochází k vytvoření nestabilního OH radikálu, který je vidět ve spektru v oblasti 306–312 nm. Toto záření bylo detekované pomocí optické emisní spektroskopie (Ocean Optics HR4000 s mřížkou 2400 vrypů/mm). Data získaná z optické emisní spektroskopie byla použitá pro výpočet rotační teploty a sledovaného časového průběhu intenzity OH radikálů. Vrstvy obsahující korozní produkty nebyly během plazmochemické redukce odstraněné úplně, ale díky reakcím, které probíhaly v plazmatu, zkřehly a mohly být po ošetření snadněji odstraněny. Některé vzorky byly před a po ošetření analyzovány SEM-EDS, další vzorky byly analyzovány pomocí XRD. EDS analýza ukázala, že po ošetření vzorků docházelo ke snížení množství kyslíku a chloru, a to zejména při 400 W pulzním režimu.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.